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Abstract
The statistical mechanics of flexible and semiflexible macromolecules is distinct from that of
small molecule systems, since the thermodynamic limit can also be approached when the
number of (effective) monomers of a single chain (realizable by a polymer solution in the dilute
limit) is approaching infinity. One can introduce effective attractive interactions into a
simulation model for a single chain such that a swollen coil contracts when the temperature is
reduced, until excluded volume interactions are effectively canceled by attractive forces, and the
chain conformation becomes almost Gaussian at the theta point. This state corresponds to a
tricritical point, as the renormalization group theory shows. Below the theta temperature a fluid
globule is predicted (at nonzero concentration then phase separation between dilute and
semidilute solutions occurs), while at still lower temperature a transition to a solid phase
(crystal or glass) occurs.

Monte Carlo simulations have shown, however, that the fluid globule phase may become
suppressed, when the range of the effective attractive forces becomes too short, with the result
that a direct (ultimately first-order) transition from the swollen coil to the solid occurs. This
behavior is analogous to the behavior of colloidal particles with a very short range of attractive
forces, where liquid–vapor-type phase separation may be suppressed. Analogous first-order
transitions from swollen coils to dense rodlike or toroidal structures occur for semiflexible
polymers. Finally, the modifications of the behavior discussed when the polymers are adsorbed
at surfaces are also mentioned, and possible relations to wetting behavior of polymer solutions
are addressed.

1. Introduction and overview

One of the most elementary problems of polymer physics is the
behavior of very long flexible polymer chains in dilute solution
when the solvent quality is varied [1, 2]. For simplicity, we
assume solvent quality is controlled by varying the temperature
T : at high T (T > �) one has good solvent conditions,
the gyration radius Rg of a chain scales with the number
N of (effective) monomers like a self-avoiding walk (SAW),
Rg ∝ Nν with [1, 2] ν ≈ 0.59, while at the so-called

‘theta temperature’ T = � one has random-walk (RW) type
behavior, Rg ∝ N1/2. The idea is, that the short range repulsive
interactions among the monomers (excluded volume!) that
lead to the swelling of the random coil in the good solvent
regime at T = � are effectively canceled by the attractive
part of the forces (which has a somewhat longer range). For
T < �, however, these attractive forces ‘win’ and cause a
‘collapse’ of the coil to a globule which has a finite density ρ,
(figure 1) Rg ∝ N1/3 and hence ρ ∝ N/R3

g → ρliquid �= 0 as
N → ∞ (while ρ → 0 for N → ∞ if T � �).
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Figure 1. Snapshot pictures of a polymer coil, generated by Monte Carlo simulation of the bond fluctuation model (see section 2) on the
simple cubic lattice, for T → ∞ (left), T = � (middle) and T � � (right), for N = 64.

(This figure is in colour only in the electronic version)

This behavior is easily understood on a mean-field level,
considering the second virial coefficient B(T ) [2]

B(T ) = 1
2

∫
(1 − exp[−U(�r)/T ]) d3�r , (1)

where U(�r) is the interaction potential between the monomers.
In dilute solution, the osmotic equation of state can be written
in terms of the virial expansion (n = number of polymers per
unit volume; pid = nT is the ideal gas contribution)

posm(T ) = p(n, T ) − nT = nB(T ) + 2n2C(T ) + · · · , (2)

where C(T ) is the third virial coefficient. Now in mean-field
theory B(T ) changes sign at T = �, B(T ) = bτ with
τ = (T − �)/�, and hence for T < � there exists a solution
with posm(n0, T ) = 0 with n0 = −B/(2C) ∝ (� − T ) > 0.
Since n0 → 0 when � is approached from below, close to
T = � the use of the virial equation of state is self-consistent.

Nevertheless the picture changes slightly when renormal-
ization group theory is invoked [1–3]. The �-point takes then
the character of a tricritical point, and the relation Rg ∝ N1/2

is modified by logarithmic corrections. In addition, the �

point no longer is given by B(T = �) = 0 but one has to
consider the variation of the (scale-dependent) virial coefficient
Bs(T ) under transformation of the scale s along the chain:
T = � then is found when the renormalized virial coefficient
β(T ) = B∞(T ) vanishes, while for T > � all renormalization
group trajectories end up at a nonzero fixed point value β∗
independent of T for T > �, reflecting universal behavior
(the exponent ν does not depend on T ).

While this standard picture, as sketched above, is widely
accepted as the standard wisdom, experimental evidence for
some crucial aspects still is almost completely lacking: so
far the theoretically predicted logarithmic corrections have not
yet been clearly identified, and experimental studies of the
collapsed globular state of single polymer coils are hampered
by hysteresis effects [4]. Simulation studies saw some
logarithmic corrections at T = �, but not in accord with the
theory [5].

In the present paper, we reconsider this problem and shall
point out that the scenario sketched in figure 1 is incomplete
because it disregards other states of a single polymer chain that
may compete with those shown. It has already been known
since a long time [6–8] that local chain stiffness is a relevant
parameter: so the coil-globule transition may be replaced by

Figure 2. Schematic phase diagram of a single flexible polymer
chain in the thermodynamic limit (N → ∞) as a function of
temperature T and range of attractive monomer–monomer
interaction λ. For λ > λt there occurs a transition at T = � from the
swollen coil to the collapsed globule and at Tcrys(∞) < � the
collapsed globule crystallizes. Due to slow crystallization kinetics,
this transition may be undercooled and rather at Tg < Tcrys(∞) the
collapsed globule freezes in a glassy state. Since we assume that the
transition lines vary linearly with the interaction volume λ3, λ3 rather
than λ has been chosen as an abscissa variable.

a transition (that becomes a sharp thermodynamic first-order
transition in the thermodynamic limit, N → ∞) from coil to
disk-like or toroidal structures, with strong bond-orientational
order along the chain. More recently, it was found that even for
fully flexible chains crystallization of polymers may preempt
the collapse into a fluid globule [9–12]. Whether or not a
fluid globule can exist depends on the interaction range λ

of the attractive part of the interaction (figure 2), and this
also has important consequences for the phase diagram of a
polymer solution at finite N and nonzero monomer density ρ

(figure 3). Of course, keeping N finite and taking rather the
number of chains M to infinity is the traditional way to take
the thermodynamic limit. For λ > λt (figure 3, right part) the
phase diagram qualitatively resembles that of a system of small
molecules. The only peculiarity is that the critical point moves
into the theta point at ρ = 0 if N → ∞,

� − TC(N) ∝ N−1/2, ρc ∝ N−1/2. (3)

In equation (3), logarithmic corrections again are disregarded
throughout.
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Figure 3. Schematic phase diagram of polymer solutions at fixed finite chain length N , as a function of temperature T and monomer density
ρ, for λ > λt (right part) and λ < λt (left part). For λ > λt one has � > Tcrys(∞), and for large N the solution separates into a dilute solution
of collapsed chains (corresponding qualitatively to the vapor (V ) phase of a small molecule fluid) and a concentrated solution (corresponding
to the liquid (L) phase). For T < Tcrys(N) only vapor and crystal phases exist in thermal equilibrium. For λ < λt , however, � < Tcrys(∞),
and then a phase diagram with a ‘swan neck’-topology may result, describing V + crystal coexistence. V + L phase separation may only
occur as metastable states.

In the present work, we shall present evidence for
figure 2, discussing Monte Carlo results [9–12] obtained
for the bond fluctuation model [13, 14] using the Wang–
Landau [15] algorithm. In section 2 we briefly recall the main
features of this model and the simulation method. Section 3
then summarizes a few key results and draws an analogy
between the phase behavior proposed in figure 3 and the
(experimentally known) phase behavior of colloid–polymer
mixtures [16]. Section 4 discusses briefly the collapse of
semiflexible chains [7, 8, 17], while section 5 describes a recent
extension discussing the competition between collapse of a
polymer ‘mushroom’ (i.e., a chain endgrafted to a wall) and
the adsorption transition [18–20]. Section 6 summarizes our
conclusions.

2. Model and simulation method

We are not interested here in a chemically realistic description
of particular polymers, but rather wish to qualitatively
address the generic behavior. Therefore we use a simple
coarse-grained model on the simple cubic lattice, the bond
fluctuation model [13, 14]. In this model, one imagines
that several chemical monomers along the chain backbone
are integrated into a single effective bond, connecting two
effective monomers. Each effective monomer is described
by an elementary cube of the lattice. All 8 corner sites
of the cube cannot be occupied by any other monomer,
modeling thus excluded volume interactions. The bonds are
not uniquely fixed in their length, but rather can take any of
the vectors (measuring all lengths in units of the lattice spac-
ing) {(±2, 0, 0); (±2,±1, 0); (±2,±1,±1); (±2,±2,±1);
(±3, 0, 0); (±3,±1, 0);}, or permutations thereof. It turns
out [13, 14] that this model can be simulated by Monte Carlo
methods [21, 22] particularly efficiently, and the approach
to the asymptotic behavior of long self-avoiding walks with
increasing chain length N is particularly rapid [13, 14].
Each effective bond represents several chemical monomers,
which due to multiple minima of the torsional potential for
each bond give rise to many different states for a group of

subsequent chemical monomers, allowing different choices of
effective bonds is not only computationally convenient but also
physically reasonable [22].

Temperature is introduced into the model by an attractive
square well interaction of depth ε(= 1) and range λ between
all monomers, so that the Hamiltonian becomes

H = −εNq, (4)

where q is the number of neighbors per monomer, i.e. the
number of other monomers within the interaction range λ. Two
values of λ will be considered, λ1 = √

6 and λ2 = √
10. In

order to describe variable chain stiffness, a bond potential can
be introduced

Ubond(ϑ) = bT (cos ϑ − 1)2, (5)

ϑ being the angle between the directions of the adjacent bonds,
and b the associate chain stiffness parameter. Normally we
choose b = 0, however.

Since we shall consider (figure 2) the interplay between
the formation of collapsed liquid globules and crystalline
states, the choice of an underlying simple cubic lattice severely
constrains the phenomena that can be described: only crystal
structures commensurate with the underlying lattice can form.
However, while no such constraint is present for off-lattice
bead-spring models [22], using the latter models for the study
of the present problem [23, 24] brings little advantages, since
the states of very low energy are much harder to find (or even
missed). Moreover, also the crystal structures of bead-spring
chains are still far from chemical reality, and a study of collapse
and crystallization of polymers using chemically realistic all-
atom models is far beyond present computer resources. Thus
we feel that the present model is a reasonable compromise,
capturing the phenomena of interest qualitatively, though a
direct mapping to experiment clearly is not possible.

The Monte Carlo method used applies ‘random hopping’,
‘slithering snake’ and ‘pivot-like’ moves [22], but we do not
apply the Metropolis algorithm [21] but rather the Wang–
Landau algorithm [15], to directly sample the energy density of

3
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Figure 4. (a) Specific heat (on a log scale) plotted versus temperature for different chain length N as indicated, choosing the interaction range
λ = λ1 = √

6. The uncertainty of the curves is below 2% as given by independent runs for the estimation of g(E) at fixed N . From Rampf
et al [9]. (b) Plot of 〈R2

g 〉T /N versus T , for λ = λ1 and different N . The inset shows a magnification of the region near the intersection points.
Reproduced from [9] with permission. Copyright 2005 IOP Publishing Ltd.

states g(E). I.e., the acceptance probability of a move from an
old configuration (with energy Eold) to a new one (with energy
Enew) is

prob(old → new) = min[1, g(Eold)/g(Enew)]. (6)

If g(E) is known, equation (6) leads to a random walk
through configuration space, and a flat histogram H (E)

counting how often different energies E are visited in the
course of the sampling results. Although g(E) in general is
unknown, of course, one can build an iteration procedure on
equation (6) [15]. Initially, one puts g(E) = 1 for all possible
values of E , and H (E) = 0. Whenever E is reached, one
replaces g(E) by f g(E) and H (E) by H (E) + 1, where
the factor f initially is arbitrarily chosen f = e for the first
round of iteration (from round to round the factor is decreased
according to fnew = √

fold, until f → 1. At each new round
one starts with H (E) = 0, of course). An iteration round is
stopped when the histogram H (E) is sufficiently ‘flat’ (i.e., the
smallest value in the histogram is at least 80% of the average
value of the histogram entries). When f → 1, the method
fulfils detailed balance (with equation (6)).

From g(E) one readily obtains the canonical partition
function as well as all averages of interest

Z(T ) =
∑

E

g(E) exp(−E/T ), F = −T ln Z , (7)

〈
Ek

〉
T

=
∑

E

Ek g(E) exp(−E/T )/Z(T ),

k = 1, 2, 3, . . . (8)

in particular the specific heat C(T )

C(T ) = [ 〈
E2

〉
T

− 〈E〉2
T

]
/T 2. (9)

However, when N = 512 we already encounter a variation
of ln g(E) from about −500 (for collapsed chains) to +400
(for swollen chains), and hence it is clear that the numerical
effort increases rapidly with N . One can also sample structural
quantities, such as 〈R2

g〉T , though the statistical effort then
is even larger, since one needs to record R2

g(X E ) in each
configuration X E belonging to the final histogram H (E) for

energy E ,

R2
g = [g(E)]−1

∑
X E

R2
g(X E ) ≈ [H (E)]−1

H (E)∑
X E = 1

R2
g(X E )

(10)〈
R2

g

〉
T

=
∑

E

g(E) R2
g exp(−E/T )/Z(T ). (11)

3. Collapse versus crystallization of flexible chains

From figure 4(a) one sees that the specific heats start to develop
gradually a broad peak at rather high temperature, but on top
of this broad peak a somewhat sharper feature grows on the
low temperature side. This peak grows into a delta function as
N → ∞, and is connected with the crystallization transition
of our model, as we shall see. The position of both peaks shift
to higher temperature with increasing chain length.

Figure 4(b) presents the corresponding data for 〈R2
g〉T .

The standard recipe to locate the collapse transition is to plot
〈R2

g〉T /N versus T for several choices of N and try to locate
� from the intersection point: we expect that in the swollen
region (for T > �) this ratio should increase with N , while
in the collapsed region (for T < �) this ratio should decrease
with N . Only for T = � an unique intersection (persisting
for N → ∞) should exist. This expectation seems to work,
when one chooses a plot with a very wide temperature range on
the abscissa; but a closer look (inset of figure 4(b)) shows that
there occurs rather a systematic finite chain length effect: each
successive pair (N, 2N) yields a slightly different estimate
T�(N), and these estimates increase with N systematically.
It turns out that the extrapolation suggested from the standard
theory of the collapse transition [2]

T�(N) = � − a1/
√

N (12)

works rather well (figure 5(a)). In equation (12), a1 is a
phenomenological constant. It is gratifying that equation (12)
also works for the specific heat peak location, and although
then a1 is quite large, the extrapolations from C(T ) and
〈R2

g〉T /N are very well compatible with each other, namely

�(λ1) = 2.14 ± 0.04, �(λ2) = 4.0 ± 0.1. (13)

4
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Figure 5. (a) Extrapolation of the location of the coil-globule transition located by the broad high-temperature peaks in the specific heat
curves (figure 4(a)) for λ1 (open circle) and λ2 (open squares). The diamonds indicate intersection points in plots of 〈R2

g〉T /N versus T for
chains of length N and 2N (figure 4(b)). Note that N−1/2 is used as abscissa, consistent with equation (12). From Paul et al [12].
(b) Extrapolation of the location of the liquid–solid transition, extracted from the sharp peak of C(T ) at low temperatures, versus N−1/3 . From
Paul et al [12]. Copyright 2007, American Physical Society.

The liquid to solid transition is a first-order transition where
the bulk free energy densities of the liquid and solid globules
are identical. The surface excess free energies due to the free
surfaces of the liquid and solid globules are not expected to
also coincide, however: thus we expect a finite-size shift of
the crystallization transition due to the relative difference in
surface free energies

Tcrys(N) = Tcrys(∞) − b1/N1/3, (14)

where b1 is another phenomenological parameter. Figure 5(b)
shows that our data are fit perfectly by equation (14), leading
to

Tcrys(λ1) = 2.18 ± 0.01, Tcrys(λ2) = 3.20 ± 0.02. (15)

Thus, for
√

10 we do have a broad temperature range where the
fluid globule exists, 3.2 < T < 4.0, while for λ1 = √

6 we do
not: for N → ∞ Tcrys(∞) seems to exceed � slightly! These
findings hence provide clear evidence for the scenario proposed
in figure 2, obviously λ1 must be close to the value λt where the
(tricritical) line of coil-globule transitions (for N → ∞) hits
the (first-order) crystallization transition curve in a (tricritical)
endpoint.

Examining the configurations of the polymer for T <

Tcrys(N) one can check that the configurations dominating the
low temperature phase indeed are crystals [9–11] rather than
glass-like states. It is also interesting to study for finite N
the liquid–solid coexistence (which occurs for T = Tcrys(N)

where the specific heat has its sharp maximum): considering
the radial density profiles ρ(r) of the globules [10], one finds
that both in the liquid and in the solid state one can distinguish
a ‘bulk’ region where the density is flat, ρ(r) ≈ ρliq(N) and
ρ(r) ≈ ρsol(N), before ρ(r) decays to zero in an interfacial
region. While ρsol(N) ≈ 1.0 independent of N , for ρliq(N)

a very different behavior is found: while ρliq(N → ∞) for
λ = λ2 extrapolates towards a nonzero constant, as expected,
for λ = λ1 it seems that ρliq(N → ∞) vanishes, since the data
can be fitted by the (empirical) power law, ρliq = 1.2 N−0.153.
If Tcrys(∞) = �, however, a simple geometric construction
readily yields ρliq ∝ N−1/3, however, since the liquid branch
of the vapor–liquid coexistence curve for N → ∞ tends

Figure 6. Theoretical (solid lines) and simulational (circles)
diagrams of states for semiflexible chains, described by the bond
fluctuation model with N = 80 (open symbols) or N = 40 (full
symbols), in the plane of variables b (stiffness potential strength,
compare equation (5)) and β = 1/T . Solid lines are given by the
formulas: (1) b = a1 + a2 β N2; (2) b = a′

1 + a′
2 β N1/3;

(3) b = a′′
1 + a′′

2 β4/3 N2/3, where a1, a′
1, a′′

1 , a2, a′
2, a′′

2 are parameters
adjusted from the best fits of the simulation data to these formulas.
From Stukan et al [8]. Copyright 2003, American Institute of
Physics.

to a straight line ending at T = � at the ordinate axis in
figure 3. Thus, we do not have a theoretical explanation for
the (effective?) exponent 0.153 observed in the simulation.

As a final remark of this section, we point out the
similarity of the homopolymer solution phase diagrams
proposed in figure 3 with the phase diagrams known for
colloid–polymer mixtures [16, 25, 26]. Representing colloids
as hard spheres of radius Rc which may neither overlap each
other nor the polymers, while the latter may overlap each
other with zero or little (≈2T ) energy cost, the polymers
cause a depletion attraction among the colloids, which has
a range of Rg, and hence may be much smaller than Rc, if
a suitable size ratio Rg/Rc between polymers and colloids
is chosen. For the resulting entropy-driven liquid–vapor
type phase separation into a polymer-rich (the ‘vapor’) and
a colloid-rich phase (the ‘liquid’) the polymer fugacity plays
the role of inverse temperature, when we refer to the phase
diagram, figure 3. It is established both from experiment [16]
and from simulation [26] that for small enough Rg/Rc this

5
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Figure 7. Snapshot pictures of toroidal structures for different chain length: N = 40 (a), 80 (b), 160 (c) and 240 (d). All data refer to a
stiffness potential strength b = 15, but different inverse temperatures β = 1.6 (a), 1.3 (b), 1.1 (c) and 1.0 (d). The (cubic) monomers of the
bond fluctuation model were drawn here as shaded spheres, and the bonds connecting them are not shown. From Stukan et al [8]. Copyright
2003, American Institute of Physics.

vapor–liquid type phase separation becomes unstable, since the
critical point decreases more strongly with decreasing Rg/Rc

than the triple point in figure 3, and ultimately the ‘swan neck’
topology of the phase diagram results. Defining a scaled width
R = λ/σ − 1 of the square well attraction (σ is the range of
the hard core repulsion), Noro and Frenkel [26] found that for
R � 0.14 the vapor–liquid criticality becomes unstable. We
hence suggest that a related phenomenon should be observable
in polymer solutions, when one has flexible chains made
from rather ‘bulky’ monomers, so that the range of the
monomer–monomer-attractions becomes small enough in
comparison with the range of the excluded volume interaction.

4. Collapse of semiflexible chains

While in the previous section fully flexible chains were con-
sidered, i.e. no bond angle potential such as equation (5) was
applied, we now briefly discuss the effect of increasing chain
stiffness on the collapse transition [6–8, 17]. This problem has
been studied by standard Monte Carlo methods [7, 8] (applying
the Metropolis algorithm [21]), and we here only briefly recall
the main findings, for the sake of comparison to the results

presented in the previous transition: figure 6 shows that with
increasing chain stiffness the coil-globule transition is shifted
to lower temperature, until it also ends at another transition line
(of first-order character) where disk-like globules or toroidal
structures are formed (figure 7). These structures are not as
disordered as the spherical collapsed globules are, but rather
exhibit a pronounced bond-orientational order, although a full
crystalline order is not present. It is possible, however, that
such states are only precursors for larger rodlike or spherical
globules that exhibit liquid-crystalline order. Due to the
potential, equation (5), in solutions of polymers of finite chain
length but nonzero monomer concentration indeed a phase
separation where a solution with nematic order appears as the
high density phase is known to occur. Thus, approaching the
thermodynamic limit at ρ = 0 for a single chain, N → ∞, it
is natural to expect that states of a single chain which exhibit
also nematic order should occur.

5. Polymers in contact with a wall: collapse versus
adsorption

When a dilute polymer solution under bad solvent conditions
is exposed to an attractive wall, one can again discuss the

6
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Figure 8. Schematic phase diagram of a polymer solution in
semi-infinite space (z > 0) with one attractive wall, plotted as a
function of temperature T and volume fraction φ taken by the
monomers (upper part, left). For T < Tc(N) two-phase coexistence
occurs (shaded). For φ = φ(1)

coex and Tw(N) < T < Tc(N), formation
of a wetting layer at the wall occurs (see the schematic volume
fraction profile φ(z) versus z in the lower right part; the profile in the
left part refers to a non-wet wall, as it occurs for T < Tw(N)). In
addition, it is assumed that for N → ∞ at T = Ta in the good
solvent regime (Ta > �) an adsorption transition occurs (cf text).
Adapted from Milchev and Binder [30].

competition between wall-monomer and monomer–monomer
attractions considering two ways of taking the thermodynamic
limit: from the point of view of the liquid–vapor phase
separation of the solution at finite N (but taking the number
of chains M and hence the system volume to infinite) we
expect near the bulk critical point a wetting transition of the
wall (figure 8, middle part): at low temperatures the wall is
non-wet, there is only a modest enhancement of the polymer
concentration close to the wall (figure 8, lower left part).
Above the wetting transition, a thick layer of the liquid phase
intrudes near the wall (figure 8, lower right part).

From the point of view of single chain transitions in the
limit of infinite chain length, however, there is a competition
between the adsorption transition from a coil to a quasi-two-
dimensional ‘pancake’ attracted to the surface [27–31] with
collapse in the bulk (figure 8, upper middle part).

Of course, it is again tempting to speculate how the two
scenarios to approach the thermodynamic limit are related.
Figure 9 shows such a speculation [31]: while in the good
solvent regime the non-adsorbed ‘mushroom’ (endgrafted

Figure 9. Phase diagram of a polymer mushroom (flexible polymer
anchoring with one end at the flat attractive surface) in the limit
N → ∞ as a function of temperature T and the monomer–wall
attraction εw. States shown are a swollen mushroom (T > �, left),
swollen pancake (T > �, right), a collapsed globule forming a
spherical droplet just touching the wall in the anchor point (T < �,
left), a sphere-cap shaped collapsed globule in the regime in between
drying and wetting transitions (broken curves), and a collapsed
pancake (T < �, right). Adapted from Metzger et al [18].

Figure 10. Diagram of states of a polymer mushroom with N = 64
using the bond fluctuation model, in the plane of parameters
βb = ε/kBT and βs = εw/kBT (the energy εw is won by monomers
in the planes z = 1 and 2, respectively, while no monomer can
occupy lattice sites for z � 0). States shown are ‘desorbed collapsed’
(DC), ‘desorbed expanded’ (DE), ‘adsorbed expanded’ (AE),
‘adsorbed collapsed’ (AC) and ‘layered structures’ (LS). Boundaries
between these states (lines) represent maxima in the fluctuations of
bead contacts or monomer–surface contacts, respectively. The
shaded rectangle shows a region where the different states are no
longer clearly distinguishable. For further explanations see the text.
From Luettmer-Strathmann et al [19]. Copyright 2008, American
Institute of Physics.

flexible macromolecule) stretches away from the wall, it
forms a (semidilute) ‘pancake’ [27–29] when the adsorption
transition for T > � has occurred. While this transition
has been carefully investigated (e.g. [29, 31]), much less is
known for T < �. Figure 9 disregards crystallization, and
suggests that for N → ∞ the wetting and drying transitions
merge at T = � at the endpoint of the adsorption transition
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line. In between drying and wetting transition lines, ‘surface-
attached globules’ are expected, which were already suggested
in a different context [32].

The actual phase diagram of polymer chains that are
endgrafted at attractive surfaces and described by the bond
fluctuation model on the simple cubic lattice is still the subject
of ongoing work [19, 33]. Figure 10 presents a ‘surface phase
diagram’ of a polymer mushroom for N = 64. We use
quotation marks here to emphasize that a true phase diagram
can only result when the limit N → ∞ is taken, of course,
and so the transitions between the different states are gradual
(no singularities occur along the lines drawn in figure 10),
and sometimes the transitions are so smeared out that they
cannot be identified any longer (shaded region of the phase
diagram). Note also that no clear evidence for the ‘surface-
attached globules’ is found—rather the wall stabilizes layered
crystalline structures (double layers, triple layers, etc) in a
significant range of the phase diagram. Note, however, that
figure 10 refers to the short range case λ1 = √

6 of the
monomer–monomer attraction only. But this study did require
an extension of the Wang–Landau technique [15] to sample
two-dimensional histogram H (Eb, Ew) of both bulk (Eb) and
surface (Ew) contributions to the total energy of the chains.

6. Conclusions

In this paper Monte Carlo simulations of conformational
changes of single chains were described. Such transitions
can be induced by variation of solvent quality or chain
stiffness in the bulk, and by interaction forces with walls
when one considers polymers endgrafted on surfaces. It has
been shown that a very rich phase behavior emerges, even
in the framework of a very idealized and simplified model,
the bond fluctuation model on the simple cubic lattice. We
have payed particular attention to the fact that the range of
attractive interactions is a very important control parameter for
polymers, both with respect to the single chain behavior, and
with respect to the phase diagram of polymer solutions at finite
monomer concentration. States with crystalline order (and
liquid-crystalline order, if stiff rather than flexible polymers are
considered) play a role, both in the bulk, and when adsorption
at surfaces is considered. It is an intriguing question to clarify
whether polymers exist which are close in behavior to the
present model rather than the standard model for lamellar
crystallization [34, 35].

There are many directions in which the present studies
could be extended (e.g. copolymers of various architectures,
off-lattice models, adsorption on structured substrates, etc).
It is hoped that the present study will stimulate such work,
and last not least guide experiment to search for some of the
predicted phenomena.
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